

Modified Bayer Process for Alumina Removal from Hanford Waste

Alumina Removal Team

- ► AREVA NC Don Geniesse, Eric Nelson, Gary Stegen
- ▶ Penn State Dr. Tony Perotta
- ► RJ Lee Randy Hermann, Marisol Avila

Hanford Alumina Problem

Current Waste Na 44,000 MT

Additional Na to Leach Al 30,000 MT

Total Na to WTP 74,000 MT

- ► Additional Na needed to leach Al sludge increases WTP Na by 68%
- ► Additional Na increases WTP glass volume and treatment schedule proportionally
- Soluble AI can plug WTP equipment by forming amorphous gel during filtration, ion exchange, cooling, dilution, and/or neutralization operations in WTP

AREVA

Alumina Solubility

- ► Alumina solubility is highly temperature dependent $Al(OH)_{3(s)} + OH^{-1} \rightarrow Al(OH)_4^{-1}$
- Alumina has poor solubility at 25°C

$$Al(OH)_{3(s)} + 5NaOH \rightarrow Al(OH)_4^{-1} + Na^{+1} + 4NaOH$$

- ~4 moles excess NaOH required to maintain 1 mole Al(OH)₄-1 soluble at 25°C
- Alumina has enhanced solubility at 100°C

$$Al(OH)_{3(s)} + 2NaOH \rightarrow Al(OH)_4^{-1} + Na^{+1} + 1NaOH$$

- ~1 mole excess NaOH is required to maintain 1 mole $AI(OH)_4^{-1}$ soluble at 100°C
- Precipitation of gibbsite regenerates hydroxide

$$Al(OH)_4^{-1} \rightarrow Al(OH)_{3(s)} + OH^{-1}$$

► Elevated temperature leaching and cooling precipitation regenerates hydroxide for additional leaching – reducing or eliminating NaOH demand for leaching alumina

Gibbsite Solubility

Gibbsite Solubility is Strongly Dependent on Temperature

Modified Bayer Process

- ► Conventional method used by aluminum industry leaches alumina from bauxite @ 150°C & precipitates gibbsite @ 60°C in seeded solution
- ► Proposed Modified Bayer Process leaches alumina sludge at 100°C and precipitates clean, crystalline gibbsite at 60°C
- Bayer process regenerates hydroxide for additional alumina leaching
- Clean, precipitated gibbsite may be used as a WTP glass former, reducing total glass volume by offsetting imported glass formers

Modified Bayer Process Experiments **DST Simulant Tests**

Leach At 100°C - Seed, and Precipitate Al(OH)₃ at 60°C

Filter and Wash Precipitate

Precipitation Methods

- ► Cooling Precipitation for regenerating NaOH and recycling leachate solution
- ► Dilution Precipitation improved yield for regenerating NaOH & recycling leachate
- ► Partial Neutralization precipitates nearly all alumina for one-pass operation (no leachate recycle)
- ► Lithium Alumina Carbonate Precipitation—

 $4Al(OH)_4^{-1} + Li_2CO_3 + 3H_2O \rightarrow Li_2CO_3.4Al(OH)_3.3H_2O + 4OH^{-1}$

Removes nearly all alumina and allows recycle of strong leachate solution

60°C Cooling Gibbsite Precipitation

75% of Theoretical Yield in 24 Hours ~100% in 4 days

60°C Cooling & Dilution Gibbsite Precipitation

Single Pass Yield Improved 40% by 1:1 Dilution

Partial Neutralization Gibbsite Precipitation

- ► Partial Neutralization precipitates soluble alumina from supernatants to prevent downstream plugging (60°C supernatants can gel when cooled to 25°C)
- ► Partial neutralization done under same conditions as cooling precipitation (60°C & seeded)
- ► Supernatant neutralized with 10% HNO₃ to pH endpoint of 11

Partial Neutralization AI(OH)₃ Precipitation

96% of Total Alumina Removed by Partial Neutralization

Product Cake Decontamination

Product Easily Filtered - 99.7% Al(OH)₃ Purity Cs Removed in Proportion to Wash Ratio

Gibbsite Crystal Size

Precipitation Occurs by Seed Growth

Hanford Application of Modified Bayer Process

- 1. Leach alumina sludge in-situ from tank sludge, decant supernatant & precipitate alumina as clean gibbsite by Modified Bayer Process
- 2. Precipitated gibbsite is decontaminated with wash water to remove interstitial (Cs, Tc, I) contamination
- 3. Evaporate filtrate to re-constitute leach liquor & recycle
- 4. Partially neutralize supernatants to precipitate gibbsite from WTP feed
- 5. Use recovered, decontaminated AI(OH)₃ as glass former in WTP melters

Modified Bayer Process Preliminary Process Flow Diagram

Pneumapress® Filter

Simple, Contained Filter Press

Boehmite (AIOOH) Solubility

Boehmite is more stable & less soluble than gibbsite

- ► Modified Bayer Process is a simple and effective method for removing and decontaminating soluble alumina and gibbsite sludge from Hanford Waste
- Existing equipment (DSTs, evaporators) may be used to reduce capital cost
- Process may be enhanced by dilution, partial neutralization, or lithium alumina carbonate precipitation to pre-condition liquor for WTP feed
- ► Boehmite removal requires more robust leaching and/or precipitation conditions than gibbsite

Modified Bayer Process for Alumina Removal from Hanford Waste

Proposed Phase 2 Approach:

Bench Scale Testing of Alumina Leaching, Precipitation, Filtration, & Evaporation

Phase 2 Bench Tests 10 Liter Scale

- ► Gibbsite & Boehmite Leaching from Simulated Sludge
- ► Seeded Gibbsite Precipitation
- ► Pressure Filtration/Wash Testing
- ► Seed Recycle
- ► Evaporation & Recycle of Filtrate

Phase 2 Pilot Tests 500 gallon Scale

- ► Vendor Tests will use Simulated Waste/C-31 Seed Slurry
- ► Tests will determine Capacity of Full-Scale System using 5 gpm pilot unit
- ► Full-scale Wash/Cake **Decontamination Factors**
- Cake Handling Properties

Phase 2 Laboratory Tests 1 Liter Scale

- ► Boehmite Leaching/Gibbsite Precipitation
- ▶ Lithium Alumina Carbonate Crystallization
- ► Effects of Organic Contaminants
- ► Alternate Waste **Compositions**

Phase 2 **Future Work Summary**

Phase 2 Work will Optimize Process Parameters for Design of Full-scale System and Specify Conditions for Hot Work Testing

- ► Precipitation Residence time
- Amount of Seed and Extent of Seed Recycle
- Amount of Wash and Extent of Decontamination
- Evaporation & Recycle of Filtrate for Leaching
- ► Potential Application of Lithium Alumina Carbonate
- Boehmite Leaching
 - Alternate Waste Composition & Effects of Organics